Skip to main content
Browse by:
GROUP

Optics and Photonics Seminar Series: Nano-photonic phenomena in van der Waals heterostructures

Event Image
Wednesday, January 21, 2015
12:00 pm - 1:00 pm
Dr. Dimitri N. Basov, Depart of Physics, University of California, San Diego

Layered van der Waals (vdW) crystals consist of individual atomic planes weakly coupled by vdW interaction, similar to graphene monolayers in bulk graphite. These materials can harbor superconductivity and ferromagnetism with high transition temperatures, emit light and exhibit topologically protected surface states. An ambitious practical goal is to exploit atomic planes of vdW crystals as building blocks of more complex artificially stacked heterostructures where each such block will deliver layer-specific attributes for the purpose of their combined functionality. We investigated van der Waals heterostructures assembled from atomically thin layers of graphene and hexagonal boron nitride (hBN). We observed a rich variety of optical effects due to surface plasmons in graphene [Fei et al. Nature 487, 82 (2012), Reviews of Modern Physics 86, 959 (2014)] and hyperbolic phonon polaritons in hBN [Dai et al. Science, 343, 1125, (2014)]. We launched, detected and imaged plasmonic, phonon polaritonic and hybrid plasmon-phonon polariton waves in a setting of an antenna based nano-infrared apparatus. Peculiar properties of hyperbolic phonon polaritons in hBN enabled sub-diffractional focusing in infrared frequencies. Because electronic, plasmonic and phonon polaritonic properties in van der Waals heterstructures are intertwined, gate voltage and/or details of layer assembly enable efficient control of nano-photonic effects.

Contact: Electrical and Computer Engineering Dept.