Skip to main content
Browse by:

Cellular Memory and Rare Cell Variability in Cancer

Sydney Shaffer Seminar 12-13-17
Icon calendar
Wednesday, December 13, 2017
Icon time
12:30 pm - 1:30 pm
Icon speaker
Dr. Sydney Shaffer
Icon series
BME Seminar

Lunch will begin at 12:15pm in the CIEMAS Pre-function Area

Abstract: Targeted therapies for cancer are a promising class of drugs that inhibit the specific molecular alterations that underlie the uncontrolled proliferation seen in cancer. The primary shortcoming of targeted therapy is disease relapse, which is driven by a subpopulation of cells that are resistant to these drugs. This phenomenon is generally thought to be genetic in origin; however, our recent work on melanoma shows that non-genetic cellular plasticity may provide a mechanism of resistance to these therapies. Furthermore, we showed that through the addition of the drug itself, cells transition from this transient plasticity into a new, stably resistant cell state via cellular reprogramming, suggesting that the time an individual cell exists in a state is important for producing the divergent resistance phenotype. However, there are currently no methods available to quantify the timescale of these fluctuations for the whole transcriptome. Thus, broadly generalizing this concept of timescales for cellular plasticity, we developed a novel method for genome-wide quantification of the timescales of gene expression memory based on a modern version of the ingenious Luria-Delbrück fluctuation analysis. In melanoma, this method revealed the gene expression state of rare cells resistant to targeted therapy.