Skip to main content
Browse by:
GROUP

Torus actions, maximality, and non-negative curvature

Event Image
Icon calendar
Friday, January 11, 2019
Icon time
3:15 pm - 4:15 pm
Icon speaker
Catherine Searle (Wichita State University)
Icon series
Geometry/topology Seminar

The classification of compact Riemannian manifolds with positive or non-negative sectional curvature is a long-standing problem in Riemannian geometry. One successful approach has been the introduction of symmetries, and an important first case to understand is that of continuous abelian symmetries. In recent work with Escher, we obtained an equivariant diffeomorphism classification of closed, simply-connected non-negatively curved Riemannian manifolds admitting an isotropy-maximal torus action, with implications for the Maximal Symmetry Rank Conjecture for non-negatively curved manifolds. I will discuss joint work with Escher and Dong, that builds on this work to extend the classification to those manifolds admitting an almost isotropy-maximal action.