Skip to main content
Browse by:
GROUP

Effective March 10, 2020, all Duke-sponsored events over 50 people have been cancelled, rescheduled, postponed or virtualized.
Please check with the event contact regarding event status. For more information, please see https://coronavirus.duke.edu/events

Parabolic Harnack inequalities on metric measure spaces

Event Image
Icon calendar
Thursday, January 17, 2019
Icon time
3:15 pm - 4:15 pm
Icon speaker
Janna Lierl (University of Connecticut)
Icon series
Probability Seminar

Parabolic PDE's describe time-dependent phenomena such as heat conduction or particle diffusion. Parabolic Harnack inequalities relate these phenomena to the geometry of the space. The relevance of the parabolic Harnack inequality in probability is due to its equivalence - in the case of the heat equation - with (sub-)Gaussian bounds for the transition density of Brownian motion. It has also been used to prove estimates for heat kernels with Neumann or Dirichlet boundary condition. In this talk I will describe recent work on Harnack inequalities for quasilinear parabolic equations on metric measure spaces.