Skip to main content
Browse by:
GROUP

Effective March 10, 2020, all Duke-sponsored events over 50 people have been cancelled, rescheduled, postponed or virtualized.
Please check with the event contact regarding event status. For more information, please see https://coronavirus.duke.edu/events

(CANCELLED) An improvement of Liouville's theorem for discrete harmonic functions

Duke Math
Icon calendar
Friday, February 21, 2020
Icon time
12:00 pm - 1:00 pm
Icon speaker
Eugenia Malinnikova
Icon series
Colloquium Seminar

An improvement of Liouville's theorem for discrete harmonic functions

The classical Liouville theorem tells us that a bounded harmonic
function on the plane is a constant. At the same time for any
(arbitrarily small) angle on the plane there exist non-constant
harmonic functions that are bounded everywhere outside this angle.
The situation is completely different for discrete harmonic functions
on the standard square lattices. The following strong version of the
Liouville theorem holds on the two-dimensional lattice. If a discrete
harmonic function is bounded on 99% of the lattice then it is constant.
A simple counter-example shows that in higher dimensions such
improvement is no longer true.

The talk is based on a joint work with L. Buhovsky, A. Logunov and M.
Sodin.