Skip to main content
Browse by:
GROUP

Until further notice, in-person public events have been canceled. Event listings include how to access online content.
Please check https://returnto.duke.edu/campus-visitors/ before coming to campus.

Cable knots are not thin

Duke Math
Icon calendar
Monday, March 02, 2020
Icon time
3:15 pm - 4:15 pm
Icon speaker
Subhankar Dey (University of Buffalo, Mathematics)
Icon series
Geometry/topology Seminar

Thurston's geometrization conjecture and its subsequent proof for Haken manifolds distinguish knots in S^3 by the geometries in the complement of the knots. While the definition of alternating knots make use of nice knot diagrams, Knot Floer homology, a knot invariant toolbox, defined by Ozsvath-Szabo and Rasumussen, generalizes the definition of alternating knots in the context of knot Floer homology and defines family of quasi-alternating knots which contains all alternating knots. Using Lipshitz-Ozsvath-Thurston's bordered Floer homology, we prove a partial affirmation of a folklore conjecture in knot Floer theory, which bridges these two viewpoints of looking at knots.