## Constrained low-rank matrix (and tensor) estimation

Sponsor(s):
Statistical Science

Friday, February 23, 2018

3:30 pm - 4:30 pm

Lenka Zdeborova, CNRS and CEA Saclay, France, Currently at Duke for Spring Semester 2018

## Information theory and high-dimensional statistical inference

Sponsor(s):
Statistical Science

Friday, March 23, 2018

3:30 pm - 4:30 pm

Galen Reeves, Duke University

## Space-Time Modeling of Small Area Data in a Developing World Setting

Sponsor(s):
Statistical Science

Friday, March 30, 2018

3:30 pm - 4:30 pm

Jon Wakefield, University of Washington

## Incorporating Uncertainty within Human-in-the-Loop Analytics for Data Exploration

Sponsor(s):
Statistical Science

Friday, April 06, 2018

3:30 pm - 4:30 pm

Leanna House, Virginia Tech

## Manifold Data Analysis with Applications to High-Resolution 3D Imaging

Sponsor(s):
Statistical Science

Friday, April 13, 2018

3:30 pm - 4:30 pm

Matthew Reimherr, Penn State University

## Space and circular time log Gaussian Cox processes with application to crime event data

Sponsor(s):
Statistical Science

Friday, April 20, 2018

3:30 pm - 4:30 pm

Alan Gelfand, Duke University

## Introducing the overlap weights for causal inference

Sponsor(s):
Statistical Science

Friday, August 31, 2018

3:30 pm - 4:30 pm

Fan Li, Duke University Statistical Science

## On the Pitman-Yor process with spike and slab base measure

Sponsor(s):
Statistical Science

Friday, September 07, 2018

3:30 pm - 4:30 pm

Antonio Canale, University of Padova, Department of Statistical Sciences

## Bayesian Multiple Breakpoint Detection: Mixing Documented and Undocumented Changepoints

Sponsor(s):
Statistical Science

Friday, September 14, 2018

3:30 pm - 4:30 pm

Robert Lund, Clemson University, Mathematical Sciences

## Permutation tests in the presence of confounders

Sponsor(s):
Statistical Science

Friday, September 21, 2018

3:30 pm - 4:30 pm

Rina Foygel Barber, University of Chicago

## Inference of biological networks with biophysically motivated methods

Sponsor(s):
Statistical Science

Friday, September 28, 2018

3:30 pm - 4:30 pm

Rich Bonneau, New York University

## Transfer Learning and Data Alignment in Single Cell Transcriptomics

Sponsor(s):
Statistical Science

Friday, October 12, 2018

3:30 pm - 4:30 pm

Nancy Zhang, Wharton School, University of Pennsylvania

## Stochastic process models for animal trajectories

Sponsor(s):
Statistical Science

Friday, October 19, 2018

3:30 pm - 4:30 pm

Mevin Hooten, Colorado State University

## The Blessings of Multiple Causes

Sponsor(s):
Statistical Science

Friday, October 26, 2018

3:30 pm - 4:30 pm

Dave Blei, Columbia University

## The Little CpG Site That Could (and eight others less so): Developing Effect Size Measures for Mediation Analysis

Sponsor(s):
Statistical Science

Friday, November 02, 2018

3:30 pm - 4:30 pm

Yue Jiang, UNC Department of Biostatistics

## Handling Missing Data in Surveys

Sponsor(s):
Statistical Science

Monday, November 05, 2018

3:30 pm - 4:30 pm

Olanrewaju Michael Akande, Department of Statistical Science, Duke University

## Monte Carlo Methods and Contingency Tables

Sponsor(s):
Statistical Science

Friday, November 09, 2018

3:30 pm - 4:30 pm

Robert Eisinger, Instructor of Mathematics, Statistics, and Computer Science, St. Olaf College

## Using Item Response Theory to Better Understand Forensic Fingerprint Examination

Sponsor(s):
Statistical Science

Monday, November 12, 2018

3:30 pm - 4:30 pm

Amanda Luby, PhD candidate, Carnegie Mellon University.

## Web Scraping in the Statistics Curricula: Challenges and Opportunities

Sponsor(s):
Statistical Science

Wednesday, November 14, 2018

3:30 pm - 4:30 pm

Mine Dogucu, Visiting Professor, Denson University

## Design and analysis of pragmatic clinical trials to optimize clinical outcomes

Sponsor(s):
Statistical Science

Friday, November 16, 2018

3:30 pm - 4:30 pm

Hayley Belli, Post-Doctoral Fellow, Division of Biostatistics New York University Langone School of Medicine

## Covariance change point detection and identification (See abstract for full title)

Sponsor(s):
Statistical Science

Monday, November 19, 2018

3:30 pm - 4:30 pm

Shawn Santo, Ph.D. Candidate at Michigan State University

## Statistical inference for infectious disease modeling

Sponsor(s):
Statistical Science

Wednesday, January 16, 2019

3:30 pm - 4:30 pm

Po-Ling Loh, University of Wisconsin - Madison

## Support points - a new way to reduce big and high-dimensional data

Sponsor(s):
Statistical Science

Friday, January 18, 2019

3:30 pm - 4:30 pm

Simon Tsz Fung Mak, Georgia Tech

## Towards a mathematical theory of development

Sponsor(s):
Statistical Science

Wednesday, January 23, 2019

3:30 pm - 4:30 pm

Geoffrey Schiebinger, Postdoctoral fellow in the MIT Center for Statistics and the Klarman Cell Observatory at the Broad Institute of MIT and Harvard

## Data Denoising for Single-cell RNA sequencing

Sponsor(s):
Statistical Science

Friday, January 25, 2019

3:30 pm - 4:30 pm

Jingshu Wang, UPENN

## Scalable Importance Tempering and Bayesian Variable Selection

Sponsor(s):
Statistical Science

Wednesday, January 30, 2019

3:30 pm - 4:30 pm

Giacomo Zanella, Bocconi University

## Stability-driven deep model interpretation and provably fast MCMC sampling

Sponsor(s):
Statistical Science

Friday, February 01, 2019

3:30 pm - 4:30 pm

Yuansi Chen, University of California, Berkeley

## Algebraic Structure in Hidden Variable Models

Wednesday, February 13, 2019

3:30 pm - 4:30 pm

Elina Robeva, MIT - Massachusetts Institute of Technology

## Calibration Concordance for Astronomical Instruments via Multiplicative Shrinkage

Friday, February 22, 2019

3:30 pm - 4:30 pm

Yang Chen, Assistant Professor of Statistics, Research Assistant Professor for MIDAS, University of Michigan

## Getting your arrays in order with convex optimization

Friday, March 08, 2019

3:30 pm - 4:30 pm

Eric Chi, Assistant Professor, NC State

## Big (Network) Data: Challenges and Opportunities for Data Science

Friday, March 22, 2019

3:30 pm - 4:30 pm

Patrick J. Wolfe, Frederick L. Hovde Dean of Science and Miller Family Professor of Statistics and Computer Science, Purdue University; IEEE Signal Processing Society Data Science Distinguished Lecturer

## Learning Coexpression Networks from Single Cell Gene Expression

Friday, April 12, 2019

3:30 pm - 4:30 pm

Andrew McDavid, Assistant Professor, Dept. of Biostatistics and Computational Biology, University of Rochester

## Large-scale evidence generation across a network of databases (LEGEND) for hypertension: real-world, reliable and reproducible

Wednesday, April 17, 2019

3:30 pm - 4:30 pm

Marc Suchard, Professor in the Departments of Biostatistics, of Biomathematics and of Human Genetics in the UCLA Fielding School of Public Health and David Geffen School of Medicine at UCLA

## Statistical Science Faculty Research Presentations

Friday, September 06, 2019

3:30 pm - 4:30 pm

Mike West, Fan Li, Amy Herring and Hau-Tieng Wu, Duke Statistical Science Faculty

## Scaling and Generalizing Approximate Bayesian Inference

Friday, September 13, 2019

3:30 pm - 4:30 pm

David Blei, Columbia University

## Causal inference under spillover and contagion: structural versus agnostic methods

Friday, September 20, 2019

3:30 pm - 4:30 pm

Forrest Crawford, Yale School of Public Health

## PageRank on Directed Complex Networks

Friday, September 27, 2019

3:30 pm - 4:30 pm

Mariana Olvero-Cravioto, UNC

## Markov-Modulated Hawkes Processes for Sporadic and Bursty Event Occurrences

Friday, October 04, 2019

3:30 pm - 4:30 pm

Dr. Tian Zheng, Columbia University

## Spiked Laplacian Graphs - harnessing the spectral graph theory in the Bayesian framework

Friday, October 11, 2019

3:30 pm - 4:30 pm

Leo Duan, University of Florida

## Bayesian Categorical Matrix Factorization via Double Feature Allocation

Friday, October 18, 2019

3:30 pm - 4:30 pm

Peter Mueller, University of Texas - Austin

## Sparsity selection in high-dimensional Bayesian vector autoregressive models based on a pseudo-likelihood approach

Friday, October 25, 2019

3:30 pm - 4:30 pm

Kshitij Khare, University of Florida

## +DS IPLE: Biomedical Data Science and Machine Learning Applications in Healthcare

Sponsor(s):
+DataScience (+DS), Biomedical Engineering (BME), Biostatistics and Bioinformatics, Information Initiative at Duke (iiD), Machine Learning, and Pratt School of Engineering

Wednesday, October 30, 2019

4:30 pm - 6:30 pm

Jessilyn Dunn

## Kernel tests of goodness-of-fit using Stein's method

Friday, November 01, 2019

3:30 pm - 4:30 pm

Arthur Gretton - Gatsby Computational Neuroscience Unit - UCL

## An Exact Auxiliary Variable Gibbs Sampler for a Class of Diffusions

Friday, November 08, 2019

3:30 pm - 4:30 pm

Vinayak Rao, Purdue

## A Bayesian Approach to Mapping Directional Brain Networks

Friday, November 15, 2019

3:30 pm - 4:30 pm

Tingting Zhang, University of Virginia

## Shuffled monotone regression

Friday, November 22, 2019

3:30 pm - 4:30 pm

Charles Doss, University of Minnesota

## Edge-Selection Priors for Graphical Models and Applications to Complex Biological Data

Friday, December 06, 2019

3:30 pm - 4:30 pm

Marina Vannucci, Rice University

## Stochastic nets and Bayesian regularization

Monday, January 06, 2020

3:30 pm - 4:30 pm

Joshua Bon, Queensland University of Technology & ARC Centre of Excellence for Mathematical and Statistical Frontiers (ACEMS)

## 'Statistics 101' for Network Data Objects

Friday, January 17, 2020

3:30 pm - 4:30 pm

Eric Kolaczyk, Boston University

## Latent variable models: from spectral methods to non-convex optimization

Wednesday, January 22, 2020

3:30 pm - 4:30 pm

Kaizheng Wang, Princeton

## Cancelled-Handling Sampling and Selection Bias in Association Studies Embedded in Electronic Health Records

Friday, January 24, 2020

3:30 pm - 4:30 pm

Bhramar Mukherjee, University of Michigan

## Testing high-dimensional linear hypotheses through spectral shrinkage

Friday, January 31, 2020

3:30 pm - 4:30 pm

Debashis Paul, University of California, Davis

## Statistical and computational perspectives on latent variable models

Wednesday, February 05, 2020

3:30 pm - 4:30 pm

Nhat Ho, Berkeley

## Geospatial Technologies for Ride-Hailing and Emergency Vehicle Fleets

Friday, February 07, 2020

3:30 pm - 4:30 pm

Dawn Woodard, Director of Data Science (Maps, Forecasting, and Experimentation),Uber

## Towards seamless carbon cycle prediction: from data assimilation to emergent constraints

Friday, February 14, 2020

3:30 pm - 4:30 pm

Kevin Bowman, JPL Science, NASA

## Probably Approximately Correct Causal Discovery

Friday, February 21, 2020

3:30 pm - 4:30 pm

David Page, Department of Biostatistics and Bioinformatics, Duke University School of Medicine

## Bayes from Moments

Friday, February 28, 2020

3:30 pm - 4:30 pm

Siddhartha Chib, Washington University, St. Louis

## Sample size considerations for precision medicine

Sponsor(s):
Statistical Science, Biostatistics and Bioinformatics, and Information Initiative at Duke (iiD)

Wednesday, March 04, 2020

3:30 pm - 4:30 pm

Eric Laber, NC State University

## Overcoming weakly identifiable mixture models with more exchangeable data

Friday, March 06, 2020

3:30 pm - 4:30 pm

Long Nguyen, University of Michigan

More Events
(60 of 65)