Skip to main content
Browse by:
GROUP

Douglas G. Hill Memorial Lecture Presented by Prof. Squire Booker: "A Radical Solution for C(sp3)–C(sp3) Bond Formation during the Biosynthesis of Macrocyclic Membrane Lipids"

Professor Squire Booker
Friday, March 10, 2023
4:00 pm - 5:30 pm
Prof. Squire Booker, Pennsylvania State University

The Department of Chemistry is excited to host Professor Squire Booker (Pennsylvania State University) for the annual Douglas G. Hill Memorial Lecture.

"A Radical Solution for C(sp3)-C(sp3) Bond Formation during the Biosynthesis of Macrocyclic Membrane Lipids"

Archaea synthesize isoprenoid-based ether-linked membrane lipids, which enable them to withstand extreme environmental conditions, such as high temperatures, high salinity, and low or high pH values. In some archaea, such as Methanocaldococcus jannaschii, these lipids are further modified by forming carbon-carbon bonds between the termini of two lipid tails within one glycerophospholipid to generate the macrocyclic archaeol or forming two carbon-carbon bonds between the termini of two lipid tails from two glycerophospholipids to generate the macrocycle glycerol dibiphytanyl glycerol tetraether (GDGT). GDGT contains two 40-carbon lipid chains (biphytanyl chains) that span both leaflets of the membrane, providing enhanced
stability to extreme conditions. How these specialized lipids are formed has puzzled scientists for decades. The reaction necessitates coupling two completely inert sp3-hybridized carbon centers, which has not been observed in nature. Here we use X-ray crystallography, high-resolution mass spectrometry, chemical synthesis, and biochemical analyses to show that the gene product of mj0619 from M. jannaschii, which encodes a radical S-adenosylmethionine enzyme, is responsible for biphytanyl chain formation during synthesis of both the macrocyclic archaeol and GDGT membrane lipids.

To learn more about Prof. Squire Booker's research, please visit:
https://sites.psu.edu/sjbookerlab/