Monitoring the systemic immune response to cancer therapy
Complex interactions occur between tumor and host immune system during cancer development and treatment, and a weak systemic immune response can be prognostic of poor patient outcomes. We strive to not only better understand the dynamic behavior of circulating immune cell populations before and during cancer therapy, but also to monitor these dynamic changes to facilitate real-time prediction of patient outcomes and potentially therapy adaptation. I will provide examples of both theoretical (mathematical) and data-driven (epidemiological) approaches to incorporating established systemic immune markers into clinical decision-making. First, coupling models of local tumor-immune dynamics and systemic T cell trafficking allows us to simulate the evolution of tumor and immune cell populations in anatomically distant sites following local therapy, in turn identifying the optimal treatment target for maximum reduction of global tumor burden. Second, improved understanding of how circulating immune markers vary both within and between individual patients can allow more accurate risk stratification at diagnosis, and personalized prediction of patient response to therapy. The importance of multi-disciplinary collaborations in making predictive and prognostic models clinically relevant will be discussed.