Skip to main content
Browse by:
GROUP

FIP Seminar: Tracking the dynamics of atoms in materials with scattering experiments and computer simulations

Event Image
Icon calendar
Wednesday, November 20, 2019
Icon time
12:00 pm - 1:00 pm
Icon speaker
Dr. Olivier Delaire, Associate Professor of Mechanical Engineering and Materials Science, Associate Professor of Chemistry, Duke University

Olivier Delaire's research program investigates atomistic transport processes of energy and charge, and thermodynamics in energy materials (DOE Early Career Award 2014). His research group studies elementary excitations in condensed-matter systems (phonons, electrons, spins), their couplings (phonon-phonon interaction, electron-phonon coupling, spin-phonon coupling), and their effects on macroscopic material properties. Current materials of interest include thermoelectrics, ferroelectrics/multiferroics, spin-caloritronics, and photovoltaics. We develop new methods to reveal microscopic underpinnings of thermal transport, by integrating neutron and x-ray scattering measurements with quantum-mechanical computer simulations. This combined experimental and computational approach opens a new window to understand and control microscopic energy transport for the design of materials with novel properties (thermoelectrics, spin-caloritronics), and to rationalize multiferroics and metal-insulator transitions. In addition to state-of-the-art scattering experiments and first-principles simulations, our team also uses transport measurements, optical spectroscopy, materials synthesis, calorimetry, and thermal characterization, with the goal of gaining deeper atomistic understanding for developing future materials.

Contact: August Burns