# Summation formula for spherical varieties

Sponsor(s): Mathematics

Braverman and Kazhdan, L. Lafforgue, Ngo, and Sakellaridis have pursued a set of conjectures asserting that analogues of the Poisson summation formula are valid for all spherical varieties. If proven, these conjectures imply the analytic continuation and functional equations of quite general Langlands L-functions (and thus, by converse theory, much of Langlands functoriality). I will explain techniques for proving the conjectures in special cases that include the first known case where the underlying spherical variety is not a generalized flag variety.