Skip to main content
Browse by:

Vortex filaments in the 3D Navier-Stokes equations

Event Image
Icon calendar
Wednesday, March 27, 2019
Icon time
12:00 pm - 1:00 pm
Icon speaker
Jacob Bedrossian (University of Maryland)
Icon series
Applied Math And Analysis Seminar

We consider solutions of the Navier-Stokes equations in 3d with vortex filament initial data of arbitrary circulation, that is, initial vorticity given by a divergence-free vector-valued measure of arbitrary mass supported on a smooth curve. First, we prove global well-posedness for perturbations of the Oseen vortex column in scaling-critical spaces. Second, we prove local well-posedness (in a sense to be made precise) when the filament is a smooth, closed, non-self-intersecting curve. Besides their physical interest as a model for the coherent vortex filament structures observed in 3d fluids, these results are the first to give well-posedness in a neighborhood of large self-similar solutions of 3d Navier-Stokes, as well as solutions which are locally approximately self-similar. Joint work with Pierre Germain and Ben Harrop-Griffiths.