Skip to main content
Browse by:
GROUP

Effective March 10, 2020, all Duke-sponsored events over 50 people have been cancelled, rescheduled, postponed or virtualized.
Please check with the event contact regarding event status. For more information, please see https://coronavirus.duke.edu/events

Types of lines and Euler Numbers enriched in GW(k)

Duke Math
Icon calendar
Monday, March 09, 2020
Icon time
3:15 pm - 4:15 pm
Icon speaker
Sabrina Pauli (University of Oslo)
Icon series
Geometry/topology Seminar

Motivated by Morel's degree in A1-homotopy theory which takes values in the Grothendieck-Witt ring of a field k, Kass and Wickelgren define the Euler number of an oriented vector bundle valued in GW(k) to be the sum of local A1-degrees of the zeros of a generic section. Using this definition they get an enriched count of lines on a smooth cubic surface in GW(k). In my talk I will compute several Euler numbers valued in GW(k). In particular, I will count lines on quintic threefolds. In addition, I will give a geometric interpretation of the local contribution of a line on a quintic threefold to the enriched Euler number. When k = R this geometric interpretation agrees with the Segre type defined by Finashin and Kharlamov.