Skip to main content
Browse by:
GROUP

Effective March 10, 2020, all Duke-sponsored events over 50 people have been cancelled, rescheduled, postponed or virtualized.
Please check with the event contact regarding event status. For more information, please see https://coronavirus.duke.edu/events

Some algorithms and analysis for first order interacting particle systems

Event Image
Icon calendar
Wednesday, January 16, 2019
Icon time
1:30 pm - 2:30 pm
Icon speaker
Lei Li (Shanghai Jiao Tong University)
Icon series
Applied Math And Analysis Seminar

We focus on first order interacting particle systems, which can be viewed as overdamped Langevin equations. In the first part, we will look at the so-called random batch methods (RBM) for simulating the interacting particle systems. The algorithms are motivated by the mini-batch idea in machine learning. For some special cases, we show the convergence of RBMs for the first marginal under Wasserstein distance. In the second part, we look at the Coulomb interaction in 3D space. We show that as the number of particles go to infinity, almost surely, the empirical measure converges in law to weak solutions of the limiting nonlinear Fokker-Planck equation. This talk is based on joint works with Shi Jin (Shanghai Jiao Tong), Jian-Guo Liu (Duke University) and Pu Yu (Peking University).