Skip to main content
Browse by:

Until further notice, in-person public events have been canceled. This includes recruitment events, tours, student programs, reunions, performances, conferences and social events.
Event listings include how to access online content. Contact event sponsor with questions.
Please note that all visitors to campus must comply with Duke’s community safety measures, which include wearing a mask,
check before coming to campus, and follow direction provided by campus personnel.

Neural network models and concurrent learning schemes for multi-scale molecular modelling

Duke Math
Icon calendar
Tuesday, February 25, 2020
Icon time
3:15 pm - 4:15 pm
Icon speaker
Linfeng Zhang (Princeton University)
Icon series
Applied Math And Analysis Seminar

We will discuss two issues in the context of applying deep learning methods to multi-scale molecular modelling: 1) how to construct symmetry-preserving neural network models for scalar and tensorial quantities; 2) how to efficiently explore the relevant configuration space and generate a minimal set of training data. We show that by properly addressing these two issues, one can systematically develop deep learning-based models for electronic properties and interatomic and coarse-grained potentials, which greatly boost the ability of ab-initio molecular dynamics; one can also develop enhanced sampling techniques that are capable of using tens or even hundreds of collective variables to drive phase transition and accelerate structure search.